Type

Author

Type

181 Ta(22 Ne, 18 N) 1989 Zh04

History
Citation Literature Cutoff Date

**ENSDF** 

30-Jun-2021

1989Zh04: A thick Ta target was bombarded by a 35 MeV/nucleon  $^{22}$ Ne beam to produce  $^{18}$ N ions that were selected by the Reaction Products Mass Separator (RPMS) at the NSCL/MSU. The  $^{18}$ N ions were implanted into a telescope comprised of five Si detectors that was situated in the focal plane of the RPMS. An implantation period of 1.2 s was used for collecting activity; this was followed by a 1.3 s counting period. The  $\beta$ -decay products were detected with essentially 100% efficiency. The apparatus was calibrated using  $\beta$ -delayed  $\alpha$ -particle emissions groups from  $^{11}$ Be and  $^{8}$ Li nuclei.

R. Spitzer, J. H. Kelley

Two strong groups are observed in the  $\alpha$ -particle spectrum, resulting from decays of the  $^{18}\text{O*}(7616,8038)$  states with  $J^{\pi}=1^{-}_{3}$  and  $1^{-}_{4}$ , respectively. A broad peak near 3 MeV ( $E_{x}=9$  MeV,  $\Gamma_{\alpha}\approx500$  keV) is also observed but the origin was unclear. (1987Aj02) suggests there may be 6 unresolved  $\alpha$ -particle emitting groups in this region. The  $\beta$ -decay branching ratios to  $^{18}\text{O*}(7616,8038)$  are found as 6.8% 5 and 1.8% 2 assuming  $\Gamma_{\alpha}/\Gamma=1.0$  for these states. The branching ratio  $\geq$ (3.6 2)% was deduced for the broad structure. A total  $\beta$ -delayed  $\alpha$ -decay branching ratio of (12.2 6)% is deduced.

<sup>18</sup>N Levels

E(level) Comments

Full Evaluation

0  $\%\beta^-\alpha=12.2\ 6\ (1989\text{Zh}04)$